End-to-End AUV Local Motion Planning Method Based on Deep Reinforcement Learning
JOURNAL OF MARINE SCIENCE AND ENGINEERING(2023)
Harbin Engn Univ
Abstract
This study aims to solve the problems of sparse reward, single policy, and poor environmental adaptability in the local motion planning task of autonomous underwater vehicles (AUVs). We propose a two-layer deep deterministic policy gradient algorithm-based end-to-end perception–planning–execution method to overcome the challenges associated with training and learning in end-to-end approaches that directly output control forces. In this approach, the state set is established based on the environment information, the action set is established based on the motion characteristics of the AUV, and the control execution force set is established based on the control constraints. The mapping relations between each set are trained using deep reinforcement learning, enabling the AUV to perform the corresponding action in the current state, thereby accomplishing tasks in an end-to-end manner. Furthermore, we introduce the hindsight experience replay (HER) method in the perception planning mapping process to enhance stability and sample efficiency during training. Finally, we conduct simulation experiments encompassing planning, execution, and end-to-end performance evaluation. Simulation training demonstrates that our proposed method exhibits improved decision-making capabilities and real-time obstacle avoidance during planning. Compared to global planning, the end-to-end algorithm comprehensively considers constraints in the AUV planning process, resulting in more realistic AUV actions that are gentler and more stable, leading to controlled tracking errors.
MoreTranslated text
Key words
autonomous underwater vehicle (AUV),deep deterministic policy gradient (DDPG),deep reinforcement learning (DRL),local motion planning
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined