Sub-second Whole Brain T2mapping Via Multiband SENSE Multiple Overlapping-Echo Detachment Imaging and Deep Learning.
Proceedings on CD-ROM - International Society for Magnetic Resonance in Medicine Scientific Meeting and Exhibition/Proceedings of the International Society for Magnetic Resonance in Medicine, Scientific Meeting and Exhibition(2024)
Xiamen Univ
Abstract
Objective. Most quantitative magnetic resonance imaging (qMRI) methods are time-consuming. Multiple overlapping-echo detachment (MOLED) imaging can achieve quantitative parametric mapping of a single slice within around one hundred milliseconds. Nevertheless, imaging the whole brain, which involves multiple slices, still takes a few seconds. To further accelerate qMRI, we introduce multiband SENSE (MB-SENSE) technology to MOLED to realize simultaneous multi-slice T2mapping.Approach.The multiband MOLED (MB-MOLED) pulse sequence was carried out to acquire raw overlapping-echo signals, and deep learning was utilized to reconstruct T2maps. To address the issue of image quality degradation due to a high multiband factor MB, a plug-and-play (PnP) algorithm with prior denoisers (DRUNet) was applied. U-Net was used for T2map reconstruction. Numerical simulations, water phantom experiments and human brain experiments were conducted to validate our proposed approach.Main results.Numerical simulations show that PnP algorithm effectively improved the quality of reconstructed T2maps at low signal-to-noise ratios. Water phantom experiments indicate that MB-MOLED inherited the advantages of MOLED and its results were in good agreement with the results of reference method.In vivoexperiments for MB = 1, 2, 4 without the PnP algorithm, and 4 with PnP algorithm indicate that the use of PnP algorithm improved the quality of reconstructed T2maps at a high MB. For the first time, with MB = 4, T2mapping of the whole brain was achieved within 600 ms.Significance.MOLED and MB-SENSE can be combined effectively. This method enables sub-second T2mapping of the whole brain. The PnP algorithm can improve the quality of reconstructed T2maps. The novel approach shows significant promise in applications necessitating high temporal resolution, such as functional and dynamic qMRI.
MoreTranslated text
Key words
T-2 mapping,multiple overlapping-echo,multiband SENSE,denoising
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined