Complexity Analysis of Regularization Methods for Implicitly Constrained Least Squares
Journal of Scientific Computing(2024)SCI 2区
Lehigh University
Abstract
Optimization problems constrained by partial differential equations (PDEs) naturally arise in scientific computing, as those constraints often model physical systems or the simulation thereof. In an implicitly constrained approach, the constraints are incorporated into the objective through a reduced formulation. To this end, a numerical procedure is typically applied to solve the constraint system, and efficient numerical routines with quantifiable cost have long been developed for that purpose. Meanwhile, the field of complexity in optimization, that estimates the cost of an optimization algorithm, has received significant attention in the literature, with most of the focus being on unconstrained or explicitly constrained problems. In this paper, we analyze an algorithmic framework based on quadratic regularization for implicitly constrained nonlinear least squares. By leveraging adjoint formulations, we can quantify the worst-case cost of our method to reach an approximate stationary point of the optimization problem. Our definition of such points exploits the least-squares structure of the objective, and provides new complexity insights even in the unconstrained setting. Numerical experiments conducted on PDE-constrained optimization problems demonstrate the efficiency of the proposed framework.
MoreTranslated text
Key words
Complexity guarantees,Nonlinear least squares,Implicit constraints,PDE-constrained optimization
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2011
被引用205 | 浏览
2009
被引用142 | 浏览
2004
被引用22 | 浏览
2018
被引用90 | 浏览
2019
被引用12 | 浏览
2021
被引用19 | 浏览
2020
被引用52 | 浏览
2021
被引用2 | 浏览
被引用1697 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话