Towards inferring the geometry of kilonovae

arXiv (Cornell University)(2023)

引用 0|浏览20
暂无评分
摘要
Recent analysis of the kilonova, AT2017gfo, has indicated that this event was highly spherical. This may challenge hydrodynamics simulations of binary neutron star mergers, which usually predict a range of asymmetries, and radiative transfer simulations show a strong direction dependence. Here we investigate whether the synthetic spectra from a 3D kilonova simulation of asymmetric ejecta from a hydrodynamical merger simulation can be compatible with the observational constraints suggesting a high degree of sphericity in AT2017gfo. Specifically, we determine whether fitting a simple P-Cygni line profile model leads to a value for the photospheric velocity that is consistent with the value obtained from the expanding photosphere method. We would infer that our kilonova simulation is highly spherical at early times, when the spectra resemble a blackbody distribution. The two independently inferred photospheric velocities can be very similar, implying a high degree of sphericity, which can be as spherical as inferred for AT2017gfo, demonstrating that the photosphere can appear spherical even for asymmetrical ejecta. The last-interaction velocities of radiation escaping the simulation show a high degree of sphericity, supporting the inferred symmetry of the photosphere. We find that when the synthetic spectra resemble a blackbody the expanding photosphere method can be used to obtain an accurate luminosity distance (within 4-7 per cent).
更多
查看译文
关键词
geometry
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要