Gauge Invariant Spectral Analysis of Quark Hadronization Dynamics
PHYSICAL REVIEW D(2023)
Hampton Univ
Abstract
We study the Dirac decomposition of the gauge-invariant quark propagator, whose imaginary part describes the hadronization of a quark as this interacts with the vacuum, and relate each of its coefficients to a specific sum rule for the chiral-odd and chiral-even quark spectral functions. Working at first in lightlike axial gauge, we obtain a new sum rule for the spectral function associated with the gauge-fixing vector and show that its second moment is, in fact, equal to zero. Then, we demonstrate that the first moment of the chiral-odd quark spectral function is equal in any gauge to the so-called inclusive jet mass, which is related to the mass of the particles produced in the hadronization of a quark. Finally, we present a gauge-dependent formula that connects the second moment of the chiral-even quark spectral function to invariant mass generation and final state rescattering in the hadronization of a quark.
MoreTranslated text
Key words
chiral dynamics
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined