WeChat Mini Program
Old Version Features

Artificial Intelligence (AI) and Machine Learning (ML) in Precision Oncology: a Review on Enhancing Discoverability Through Multiomics Integration.

BRITISH JOURNAL OF RADIOLOGY(2023)

Univ Michigan

Cited 15|Views35
Abstract
Multiomics data including imaging radiomics and various types of molecular biomarkers have been increasingly investigated for better diagnosis and therapy in the era of precision oncology. Artificial intelligence (AI) including machine learning (ML) and deep learning (DL) techniques combined with the exponential growth of multiomics data may have great potential to revolutionize cancer subtyping, risk stratification, prognostication, prediction and clinical decision-making. In this article, we first present different categories of multiomics data and their roles in diagnosis and therapy. Second, AI-based data fusion methods and modeling methods as well as different validation schemes are illustrated. Third, the applications and examples of multiomics research in oncology are demonstrated. Finally, the challenges regarding the heterogeneity data set, availability of omics data, and validation of the research are discussed. The transition of multiomics research to real clinics still requires consistent efforts in standardizing omics data collection and analysis, building computational infrastructure for data sharing and storing, developing advanced methods to improve data fusion and interpretability, and ultimately, conducting large-scale prospective clinical trials to fill the gap between study findings and clinical benefits.
More
Translated text
Key words
Medical Image Analysis,Cancer Imaging
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined