Easy and Accessible Workflow for Label-Free Single-Cell Proteomics.
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY(2023)
Brigham Young Univ
Abstract
Single-cell proteomics (SCP) can provide information that is unattainable through either bulk-scale protein measurements or single-cell profiling of other omes. Maximizing proteome coverage often requires custom instrumentation, consumables, and reagents for sample processing and separations, which has limited the accessibility of SCP to a small number of specialized laboratories. Commercial platforms have become available for SCP cell isolation and sample preparation, but the high cost of these platforms and the technical expertise required for their operation place them out of reach of many interested laboratories. Here, we assessed the new HP D100 Single Cell Dispenser for label-free SCP. The low-cost instrument proved highly accurate and reproducible for dispensing reagents in the range from 200 nL to 2 μL. We used the HP D100 to isolate and prepare single cells for SCP within 384-well PCR plates. When the well plates were immediately centrifuged following cell dispensing and again after reagent dispensing, we found that ∼97% of wells that were identified in the instrument software as containing a single cell indeed provided the proteome coverage expected of a single cell. This commercial dispenser combined with one-step sample processing provides a very rapid and easy-to-use workflow for SCP with no reduction in proteome coverage relative to a nanowell-based workflow, and the commercial well plates also facilitate autosampling with unmodified instrumentation. Single-cell samples were analyzed using home-packed 30 μm i.d. nanoLC columns as well as commercially available 50 μm i.d. columns. The commercial columns resulted in ∼35% fewer identified proteins. However, combined with the well plate-based preparation platform, the presented workflow provides a fully commercial and relatively low-cost alternative for SCP sample preparation and separation, which should greatly broaden the accessibility of SCP to other laboratories.
MoreTranslated text
Key words
Single-Cell
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2000
被引用101 | 浏览
2016
被引用186 | 浏览
2018
被引用444 | 浏览
2018
被引用220 | 浏览
2018
被引用107 | 浏览
2018
被引用572 | 浏览
2018
被引用44 | 浏览
2019
被引用143 | 浏览
2019
被引用29 | 浏览
2022
被引用5059 | 浏览
2021
被引用74 | 浏览
2022
被引用52 | 浏览
2022
被引用18 | 浏览
2023
被引用24 | 浏览
2023
被引用13 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper