Secure and Efficient Mobile DNN Using Trusted Execution Environments.

AsiaCCS(2023)

引用 0|浏览39
暂无评分
摘要
Many mobile applications have resorted to deep neural networks (DNNs) because of their strong inference capabilities. Since both input data and DNN architectures could be sensitive, there is an increasing demand for secure DNN execution on mobile devices. Towards this end, hardware-based trusted execution environments on mobile devices (mobile TEEs), such as ARM TrustZone, have recently been exploited to execute CNN securely. However, running entire DNNs on mobile TEEs is challenging as TEEs have stringent resource and performance constraints. In this work, we develop a novel mobile TEE-based security framework that can efficiently execute the entire DNN in a resource-constrained mobile TEE with minimal inference time overhead. Specifically, we propose a progressive pruning to gradually identify and remove the redundant neurons from a DNN while maintaining a high inference accuracy. Next, we develop a memory optimization method to deallocate the memory storage of the pruned neurons utilizing the low-level programming technique. Finally, we devise a novel adaptive partitioning method that divides the pruned model into multiple partitions according to the available memory in the mobile TEE and loads the partitions into the mobile TEE separately with a minimal loading time overhead. Our experiments with various DNNs and open-source datasets demonstrate that we can achieve 2-30 times less inference time with comparable accuracy compared to existing approaches securing entire DNNs with mobile TEE.
更多
查看译文
关键词
Network Pruning, TEE, DNN, Security in Machine Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要