WeChat Mini Program
Old Version Features

Predicting Battery Impedance Spectra from 10-Second Pulse Tests under 10 Hz Sampling Rate

ISCIENCE(2023)

Hong Kong Univ Sci & Technol

Cited 16|Views14
Abstract
Onboard measuring the electrochemical impedance spectroscopy (EIS) for lithium-ion batteries is a long-standing issue that limits the technologies such as portable electronics and electric vehicles. Challenges arise from not only the high sampling rate required by the Shannon Sampling Theorem but also the sophisticated real-life battery-using profiles. We here propose a fast and accurate EIS predicting system by combining the fractional-order electric circuit model—a highly nonlinear model with clear physical meanings—with a median-filtered neural network machine learning. Over 1000 load profiles collected under different state-of-charge and state-of-health are utilized for verification, and the root-mean-squared-error of our predictions could be bounded by 1.1 mΩ and 2.1 mΩ when using dynamic profiles last for 3 min and 10 s, respectively. Our method allows using size-varying input data sampled at a rate down to 10 Hz and unlocks opportunities to detect the battery’s internal electrochemical characteristics onboard via low-cost embedded sensors.
More
Translated text
Key words
Electrochemical energy storage,Machine learning,Computational materials science
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined