Interfacial Interactions of Uranium and Arsenic with Microplastics: From Field Detection to Controlled Laboratory Tests

ENVIRONMENTAL ENGINEERING SCIENCE(2023)

引用 1|浏览27
暂无评分
摘要
We studied the co-occurrence of microplastics (MPs) and metals in field sites and further investigated their interfacial interaction in controlled laboratory conditions. First, we detected MPs in freshwater co-occurring with metals in rural and urban areas in New Mexico. Automated particle counting and fluorescence microscopy indicated that particles in field samples ranged from 7 to 149 particles/L. The urban location contained the highest count of confirmed MPs, including polyester, cellophane, and rayon, as indicated by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy analyses. Metal analyses using inductively coupled plasma (ICP) revealed that bodies of water in a rural site affected by mining legacy contained up to 332.8 mu g/L of U, while all bodies of water contained As concentrations below 11.4 mu g/L. These field findings motivated experiments in laboratory conditions, reacting MPs with 0.02-0.2 mM of As or U solutions at acidic and neutral pH with poly(methyl-methacrylate), polyethylene, and polystyrene MPs. In these experiments, As did not interact with any of the MPs tested at pH 3 and pH 7, nor U with any MPs at pH 3. Experiments supplied with U and MPs at pH 7 indicated that MPs served as substrate surface for the adsorption and nucleation of U precipitates. Chemical speciation modeling and microscopy analyses (i.e., Transmission Electron Microscopy [TEM]) suggest that U precipitates resemble sodium-compreignacite and schoepite. These findings have relevant implications to further understanding the occurrence and interfacial interaction of MPs and metals in freshwater.
更多
查看译文
关键词
microplastics,arsenic,uranium,interfacial interactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要