WeChat Mini Program
Old Version Features

基于改进非局部注意力模块的非侵入负荷辩识

Journal of Huazhong University of Science and Technology(Nature Science Edition)(2023)

山东大学

Cited 0|Views20
Abstract
针对目前基于深度学习的非侵入式负荷辩识领域中存在的模型复杂度高、参数量大及获取长距离特征间依赖关系的能力弱等问题,提出一种基于注意力机制的轻量级负荷辨识模型.该模型以低时间维度的设备电流信息为输入,通过引入改进非局部注意力模块建模不同时间电流的特征关系,建立轻量级的时间残差卷积神经网络.在公开PLAID(即插设备标识数据集)和WHITED(全球家庭和工业瞬态能源数据集)上的实验表明:在设备识别率分别达到97.32%和99.32%的情况下,模型的计算量低至4×105,且模型的参数量小于5.2×104.
More
Translated text
Key words
non-intrusive load monitoring,non-local neural network,convolutional neural network,deep learning,residual learning
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined