Predicting Propellant Properties of Boron-Based Hypergolic Ionic Liquids via Machine Learning
crossref(2022)
Northwestern Polytechnical University
Abstract
Boron-based hypergolic ionic liquids (HILs) have gained increasing attention in the field of propellants due to the low toxicity, high energy density, and short ignition delay time. However, the performance of propellants based on boron-based HILs is still inferior to hydrazine derivatives, restricting their widespread applications as a rocket propellant. To boost the propellant performance of boron-based HILs, constantly engineering their chemical structures is highly necessary. The conventional approaches modify the anions and cations of the ionic liquids based on experiences and heuristics, and then experimentally verify the physicochemical properties of the synthesized compounds. However, such a trial-and-error design cycle is biased by practitioners’ preferences and the variations of experimental conditions. Meanwhile, it is expensive and tedious to measure all relevant properties of the ionic liquids by experiments. To solve these problems, we propose a protocol of combining machine learning and density functional theory (DFT) calculations to predict boron-based HILs’ properties such as ignition delay time, thermal stability, and energy storage capacity. With well-curated data, the experimental results show that the machine learning approaches can satisfactorily predict the chemical properties of boron-based HILs. We also use the Shapley value to find that (1) the thermal correction to enthalpy is critical for ignition delay, (2) HOMO, electronic energy and entropy values have a major impact on decomposition temperature, and (3) electronic energy also has a significant impact on the specific impulse.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined