WeChat Mini Program
Old Version Features

Physics-informed Graph Neural Networks for Predicting Cetane Number with Systematic Data Quality Analysis

PROCEEDINGS OF THE COMBUSTION INSTITUTE(2023)

Colorado State Univ

Cited 17|Views35
Abstract
Designing alternative fuels for advanced compression ignition engines necessitates a predictive model for cetane number (CN). In this study, the physics-informed graph neural networks are introduced for a reliable CN prediction by considering molecular features pertinent to the physical properties of molecules that affect CN. The reliability of measured data is another key factor to consider for improving the predictive model. Various experimental instruments for measuring CN exist, including standard and non-standard methods. In this regard, a systematic data quality analysis was carried out for the total 630 CNs collected from literature and new measurements in this study using Advanced Fuel Ignition Delay Analyzer (AFIDA). The results from this data curation process were reflected in the model by imposing lower sample weights on the data coming from less reliable measurement techniques. This approach effectively maximized the prediction accuracy while incorporating data from all available sources. Using the sample weights decreased the mean absolute error (MAE) up to 0.8 CN units. The accuracy was also improved by introducing the CN-related physical properties (the number of hydrogen bond donors and acceptors); the test set MAE is 5.74 and 7.01 for the model with and without such properties, respectively. Investigating molecular structural effects on CN was also carried out to gain chemical insights into factors used to design new fuel candidates. The dimensionality reduction analysis of feature vectors showed a clear clustering in terms of functional groups and CN and the structural effect derived from the model was consistent with the physicochemical insights. This physics-informed model and data curation would be helpful for accurate CN prediction and inform rational fuel design.
More
Translated text
Key words
Cetane number,Machine learning,Graph neural network,Data curation
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined