Omega-3 Polyunsaturated Fatty Acids Protect Neurological Function After Traumatic Brain Injury by Suppressing Microglial Transformation to the Proinflammatory Phenotype and Activating Exosomal NGF/TrkA Signaling

Molecular neurobiology(2023)

引用 1|浏览0
暂无评分
摘要
The transformation of microglia to a pro-inflammatory phenotype at the site of traumatic brain injury (TBI) drives the progression of secondary neurodegeneration and irreversible neurological impairment. Omega-3 polyunsaturated fatty acids (PUFA) have been shown to suppress this phenotype transformation, thereby reducing neuroinflammation following TBI, but the molecular mechanisms are unknown. We found that Omega-3 PUFA suppressed the expression of disintegrin metalloproteinase (ADAM17), the enzyme required to convert tumor necrosis factor-α (TNF-α) to the soluble form, thereby inhibiting the TNF-α/NF-κB pathway both in vitro and in a mouse model of TBI. Omega-3 PUFA also prevented the reactive transformation of microglia and promoted the secretion of microglial exosomes containing nerve growth factor (NGF), activating the neuroprotective NGF/TrkA pathway both in culture and TBI model mice. Moreover, Omega-3 PUFA suppressed the pro-apoptotic NGF/P75NTR pathway at the TBI site and reduced apoptotic neuronal death, brain edema, and disruption of the blood–brain barrier. Finally, Omega-3 PUFA preserved sensory and motor function as assessed by two broad-spectrum test batteries. The beneficial effects of Omega-3 PUFA were blocked by an ADAM17 promotor and by a NGF inhibitor, confirming the pathogenic function of ADAM17 and the central neuroprotective role of NGF. Collectively, these findings provide a strong experimental basis for Omega-3 PUFA as a potential clinical treatment for TBI.
更多
查看译文
关键词
Traumatic brain injury,Omega-3 polyunsaturated fatty acid,Microglia,ADAM17,TNF-α/NF-κB pathway,Exosome,Nerve growth factor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要