WeChat Mini Program
Old Version Features

Enhancing 5G Core with Multi-Access Edge Computing.

Ho-Cheng Lee,Fuchun Joseph Lin,Jyh-Cheng Chen,Chien Chen, Patrick Wang

WOCC(2023)

Department of Computer Science

Cited 0|Views5
Abstract
This research employs NYCU-developed open source 5G core network $\boldsymbol{free5GC}$ and Intel open source edge computing platform OpenNESS to build a 5G private network. An online multi-person chorus application is then deployed on the edge platform to (1) achieve High Reliability and Low Latency Communication (URLLC) requirements, and (2) improve the backhaul bandwidth occupancy rate from the edge to the core network. In addition, this research implements the traffic influence function proposed in the 3GPP 5G standards, which can dynamically change traffic rules of the 5G core during execution, directing specific traffic to the edge applications in order to improve the performance of private networks. Finally, to verify the effectiveness of this schema, this research uses the example application deployed to compare the performance of the system equipped with edge computing with that without edge platform. Our analysis is done with both a physical RAN and the UERANSIM simulator.
More
Translated text
Key words
5G,Core Network,NFV,Edge Computing,Low Latency,Traffic Influence
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined