WeChat Mini Program
Old Version Features

基于条件生成对抗网络的手语样本骨架缺失关节点修复

Journal of Computer-Aided Design & Computer Graphics(2023)

特种光纤与先进通信国际合作联合实验室

Cited 0|Views3
Abstract
计算机视觉技术由于受到遮挡、视角和光照等因素的影响,对手语样本骨架关节点的检测通常存在缺失,导致手语识别准确率降低.为此,提出基于条件生成对抗网络(CGAN)的手语样本骨架缺失关节点修复方法.首先,通过分析手语样本残缺骨架中关节点的缺失分布情况,构建缺失关节点分布概率模型;其次,对完整骨架引入分布概率模型生成的缺失关节点,将这些残缺骨架用于CGAN框架中生成器和判别器的训练,通过CGAN框架训练好的生成器能够以残缺骨架为条件生成没有缺失的骨架;最后,用生成骨架去补全残缺骨架,即完成了修复.在中国手语数据集CSL上开展实验,生成器迭代训练80次后,生成骨架与完整骨架的平均均方根误差从0.019减小到0.001;在修复骨架缺失关节点的手语样本上,搭建手语识别网络迭代训练120次,与未进行修复相比,其识别准确率从90.6%提升为99.6%.实验结果表明,该方法能够有效地修复缺失关节点,极大地提升手语识别准确率.
More
Translated text
Key words
sign language samples,missing joint points,conditional generation adversarial networks,distribution probability model,sign language recognition
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined