WeChat Mini Program
Old Version Features

基于XGBoost算法的遥感图像云检测

Remote Sensing Technology and Application(2023)

长安大学

Cited 0|Views18
Abstract
云检测是利用卫星遥感影像进行相关应用的基础.针对云检测过程容易受到复杂地表环境干扰的问题,提出了一种基于极限梯度提升(XGBoost)算法的云检测模型.该方法以TOA反射率、亮温和光谱指数等组建特征空间;然后,采用贝叶斯优化对XGBoost模型的超参数进行了调整.为检验XGBoost的云检测效果,选择不同云场景的Landsat 8遥感影像为测试数据,并把XGBoost、随机森林和决策树的云检测结果作对比.结果表明:本文提出的XGBoost云检测模型的云识别效果优于随机森林和决策树,展现了 XGBoost在云检测中的潜力;且XGBoost的F1分数和Kappa系数分别可达73%和71%以上,实现了较准确的云检测,可为后续开展云检测研究提供一定的支持.
More
Translated text
Key words
Cloud Detection,XGBoost,Random Forest,Decision Tree,Landsat 8
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined