WeChat Mini Program
Old Version Features
Activate VIP¥0.73/day
Master AI Research

Comparison of Machine Learning and Conventional Criteria in Detecting Left Ventricular Hypertrophy and Prognosis with Electrocardiography

EUROPEAN HEART JOURNAL - DIGITAL HEALTH(2025)

Taipei Vet Gen Hosp

Cited 0|Views3
Abstract
Aims Left ventricular hypertrophy (LVH) is clinically important; current electrocardiography (ECG) diagnostic criteria are inadequate for early detection. This study aimed to develop an artificial intelligence (AI)-based algorithm to improve the accuracy and prognostic value of ECG criteria for LVH detection.Methods and results A total of 42 016 patients (64.3 +/- 16.5 years, 55.3% male) were enrolled. LV mass index was calculated from echocardiographic measurements. Left ventricular hypertrophy screening utilized ECG criteria, including Sokolow-Lyon, Cornell product, Cornell/strain index, Framingham criterion, and Peguero-Lo Presti. An AI algorithm using CatBoost was developed and validated (training dataset 80% and testing dataset 20%). F1 scores, reflecting the harmonic mean of precision and recall, were calculated. Mortality data were obtained through linkage with the National Death Registry. The CatBoost-based AI algorithm outperformed conventional ECG criteria in detecting LVH, achieving superior sensitivity, specificity, positive predictive value, F1 score, and area under curve. Significant features to predict LVH involved QRS and P-wave morphology. During a median follow-up duration of 10.1 years, 1655 deaths occurred in the testing dataset. Cox regression analyses showed that LVH identified by AI algorithm (hazard ratio and 95% confidence interval: 1.587, 1.309-1.924), Sokolow-Lyon (1.19, 1.038-1.365), Cornell product (1.301, 1.124-1.505), Cornell/strain index (1.306, 1.185-1.439), Framingham criterion (1.174, 1.062-1.298), and echocardiography-confirmed LVH (1.124, 1.019-1.239) were all significantly associated with mortality. Notably, AI-diagnosed LVH was more predictive of mortality than echocardiography-confirmed LVH.Conclusion Artificial intelligence-based LVH diagnosis outperformed conventional ECG criteria and was a superior predictor of mortality compared to echocardiography-confirmed LVH.
More
Translated text
Key words
Artificial intelligence,Electrocardiogram,Left ventricular hypertrophy,Prognosis
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined