Unsupervised Meta-Clustering Identifies Risk Clusters in Acute Myeloid Leukemia Based on Clinical and Genetic Profiles
Jan-Niklas Eckardt,Christoph Röllig,Klaus Metzeler,Peter Heisig,Sebastian Stasik,Julia-Annabell Georgi,Frank Kroschinsky,Friedrich Stölzel,Uwe Platzbecker,Karsten Spiekermann,Utz Krug,Jan Braess,Dennis Görlich,Cristina Sauerland,Bernhard Woermann,Tobias Herold,Wolfgang Hiddemann,Carsten Müller-Tidow,Hubert Serve,Claudia D. Baldus,Kerstin Schäfer-Eckart,Martin Kaufmann,Stefan W. Krause,Mathias Hänel,Wolfgang E. Berdel,Christoph Schliemann,Jiri Mayer,Maher Hanoun,Johannes Schetelig,Karsten Wendt,Martin Bornhäuser,Christian Thiede,Jan Moritz Middeke COMMUNICATIONS MEDICINE(2023)
Key words
Acute myeloid leukaemia,Cancer genetics,Medicine/Public Health,general
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper