WeChat Mini Program
Old Version Features
Activate VIP¥0.73/day
Master AI Research

Data-Driven RANS Turbulence Closures for Forced Convection Flow in Reactor Downcomer Geometry

NUCLEAR TECHNOLOGY(2024)

North Carolina State Univ

Cited 0|Views8
Abstract
Recent progress in data-driven turbulence modeling has shown its potential to enhance or replace traditional equation-based Reynolds-averaged Navier-Stokes (RANS) turbulence models. This work utilizes invariant neural network (NN) architectures to model Reynolds stresses and turbulent heat fluxes in forced convection flows (when the models can be decoupled). As the considered flow is statistically one dimensional, the invariant NN architecture for the Reynolds stress model reduces to the linear eddy viscosity model. To develop the data-driven models, direct numerical and RANS simulations in vertical planar channel geometry mimicking a part of the reactor downcomer are performed. Different conditions and fluids relevant to advanced reactors (sodium, lead, unitary-Prandtl number fluid, and molten salt) constitute the training database. The models enabled accurate predictions of velocity and temperature, and compared to the baseline k -tau turbulence model with the simple gradient diffusion hypothesis, do not require tuning of the turbulent Prandtl number. The data-driven framework is implemented in the open-source graphics processing unit-accelerated spectral element solver nekRS and has shown the potential for future developments and consideration of more complex mixed convection flows.
More
Translated text
Key words
Machine learning,turbulence modeling,forced convection,low- and high-Prandtl fluids,data-driven modeling
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined