Observing super-quantum correlations across the exceptional point in a single, two-level trapped ion

arXiv (Cornell University)(2023)

引用 0|浏览5
暂无评分
摘要
Quantum theory provides rules governing much of the microscopic world, and among its counter-intuitive consequences are correlations that exceed the bounds from local, classical theories. In two-level quantum systems - qubits - unitary dynamics theoretically limit these spatiotemporal quantum correlations, called Bell/Clauser-Horn-Shimony-Holt or Leggett-Garg inequalities, to $2\sqrt{2}$ or 1.5 respectively. Experiments with state-of-the-art qubits have approached the spatial, Bell and temporal, Leggett-Garg quantum correlation bounds. Here, using a dissipative, trapped $^{40}$Ca$^+$ ion governed by a two-level, non-Hermitian Hamiltonian, we observe temporal correlation values up to 1.703(4) for the Leggett-Garg parameter $K_3$, clearly exceeding the hitherto inviolable L\"{u}der's bound of 1.5. These excesses occur across the exceptional point of the parity-time symmetric Hamiltonian responsible for the qubit's non-unitary, coherent dynamics. Distinct evolution speeds for antipodal qubit states, which violate the unified (Mendelstam-Tamm or Margolus-Levitin) bound $\tau_{\textrm{QSL}}$ for the transit time based on quantum speed limit, result in the super-quantum $K_3$ values observed over a wide parameter range. Our results demonstrate that post-selected, coherent dynamics of non-Hermitian Hamiltonians pave the way for enhanced quantum correlations that exceed protocols based on unitary or dissipative dynamics.
更多
查看译文
关键词
exceptional point,correlations,super-quantum,two-level
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要