The Plug and Play of Language Models for Text-to-image Generation
ICLR 2023(2023)
Researcher
Abstract
Text-to-image (T2I) models enable controllable image generation through user-provided captions. A text encoder is typically used to map captions to a latent space, and it has been shown to be critical for model's performance. However, replacing or upgrading the text encoder in a T2I model is challenging due to the tight bond between the current encoder and the image decoder. It requires training the model from scratch, which can be prohibitively expensive. To address this problem, we introduce a more efficient approach to align a pre-trained language model with the latent space of an existing T2I model. We propose a Model Translation Network (MTN) and a new training objective to align the representation spaces of the two text encoders using only a corpus of unlabeled text. We empirically find that MTN can be trained efficiently and can boost the performance of existing T2I models by upgrading their text encoder. Moreover, we find that MTN can align multilingual language models such as XLM-Roberta, thus allowing existing T2I models to generate high-quality images from captions beyond English.
MoreTranslated text
Key words
Text-to-Image Generation,Language Models,Efficiency
求助PDF
上传PDF
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined