Understanding Electron Transfer Reactions Using Constrained Density Functional Theory: Complications Due to Surface Interactions.

The journal of physical chemistry. C, Nanomaterials and interfaces(2023)

引用 2|浏览0
暂无评分
摘要
The kinetic rates of electrochemical reactions depend on electrodes and molecules in question. In a flow battery, where the electrolyte molecules are charged and discharged on the electrodes, the efficiency of the electron transfer is of crucial importance for the performance of the device. The purpose of this work is to present a systematic atomic-level computational protocol for studying electron transfer between electrolyte and electrode. The computations are done by using constrained density functional theory (CDFT) to ensure that the electron is either on the electrode or in the electrolyte. The ab initio molecular dynamics (AIMD) is used to simulate the movement of the atoms. We use the Marcus theory to predict electron transfer rates and the combined CDFT-AIMD approach to compute the parameters for the Marcus theory where it is needed. We model the electrode with a single layer of graphene and methylviologen, 4,4'-dimethyldiquat, desalted basic red 5, 2-hydroxy-1,4-naphthaquinone, and 1,1-di(2-ethanol)-4,4-bipyridinium were selected for the electrolyte molecules. All of these molecules undergo consecutive electrochemical reactions with one electron being transferred at each stage. Because of significant electrode-molecule interactions, it is not possible to evaluate outer-sphere ET. This theoretical study contributes toward the development of a realistic-level prediction of electron transfer kinetics suitable for energy storage applications.
更多
查看译文
关键词
electron transfer reactions,electron transfer,constrained density functional theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要