Improved Brain Tumor Conspicuity at 3 T Using Dark Blood, Fat-Suppressed, Dixon Unbalanced T1 Relaxation-Enhanced Steady-State MRI.

Investigative radiology(2023)

引用 0|浏览9
暂无评分
摘要
OBJECTIVES:Contrast-enhanced magnetic resonance imaging (MRI) is the cornerstone for brain tumor diagnosis and treatment planning. We have developed a novel dual-echo volumetric dark blood pulse sequence called Dixon unbalanced T1 relaxation-enhanced steady-state (uT 1 RESS) that improves the visibility of contrast-enhancing lesions while suppressing the tissue signals from blood vessels and fat. The purpose of this study was to test the hypothesis that Dixon uT 1 RESS would significantly improve the conspicuity of brain tumors compared with magnetization-prepared rapid gradient echo (MPRAGE), as well as to determine potential limitations of the technique. MATERIALS AND METHODS:This retrospective study was approved by the hospital institutional review board. Forty-seven adult patients undergoing an MRI scan for a brain tumor indication were included. Contrast-enhanced MRI of the brain was performed at 3 T using both MPRAGE and Dixon uT 1 RESS. To control for any impact of contrast agent washout during the scan procedure, Dixon uT 1 RESS was acquired in approximately half the subjects immediately after MPRAGE, and in the other half immediately before MPRAGE. Image quality, artifacts, and lesion detection were scored by 3 readers, whereas lesion apparent signal-to-noise ratio and lesion-to-background Weber contrast were calculated from region-of-interest measurements. RESULTS:Image quality was not rated significantly different between MPRAGE and Dixon uT 1 RESS, whereas motion artifacts were slightly worse with Dixon uT 1 RESS. Comparing Dixon uT 1 RESS with MPRAGE, the respective values for mean lesion apparent signal-to-noise ratio were not significantly different (199.31 ± 99.05 vs 203.81 ± 110.23). Compared with MPRAGE, Dixon uT 1 RESS significantly increased the tumor-to-brain contrast (1.60 ± 1.18 vs 0.61 ± 0.47 when Dixon uT1RESS was acquired before MPRAGE and 1.94 ± 0.97 vs 0.82 ± 0.55 when Dixon uT 1 RESS was acquired after MPRAGE). In patients with metastatic disease, Dixon uT 1 RESS detected at least 1 enhancing brain lesion that was missed by MPRAGE on average in 24.7% of patients, whereas Dixon uT 1 RESS did not miss any lesions that were demonstrated by MPRAGE. Dixon uT 1 RESS better detected vascular and dural invasion in a small number of patients. CONCLUSIONS:In conclusion, brain tumors were significantly more conspicuous at 3 T using Dixon uT 1 RESS compared with MPRAGE, with an approximately 2.5-fold improvement in lesion-to-background contrast irrespective of sequence order. It outperformed MPRAGE for the detection of brain metastases, dural or vascular involvement. These results suggest that Dixon uT 1 RESS could prove to be a useful adjunct or alternative to existing neuroimaging techniques for the postcontrast evaluation of intracranial tumors.
更多
查看译文
关键词
MRI, brain tumor, metastasis, dark blood, contrast-enhanced, gradient-spoiled, MPRAGE, neuroimaging, 3 T
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要