Light-driven textile sensors with potential application of UV detection

RSC advances(2023)

引用 0|浏览6
暂无评分
摘要
Smart textiles based on monitoring systems of health conditions, structural behaviour, and external environmental conditions have been presented as elegant solutions for the increasing demands of health care. In this study, cotton fabrics (CFs) were modified by a common strategy with a dipping-padding procedure using reduced graphene oxide (RGO) and a photosensitive dye, spiropyran (SP), which can detect environmental UV light. The morphology of the CF is observed by scanning electron microscopy (SEM) measurements showing that the topography structure of coatings is related to the SP content. The resistance of the textile sensors decreases after UV radiation, which may be attributed to the easier electron transmission on the coatings of the CF. With the increase of SP content, the introduction of a large amount of SP within the composites could cause discontinuous distributions of RGO in the fiber surfaces, preventing electron transmission within the coatings of the RGO. The surface wettability of the coatings and the sweat sensitivity are also studied before and after UV radiation.
更多
查看译文
关键词
textile sensors,uv,light-driven
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要