Ecomorphological patterns in trigeminal canal branching among sauropsids reveal sensory shift in suchians

Journal of Anatomy(2023)

引用 2|浏览7
暂无评分
摘要
The vertebrate trigeminal nerve is the primary mediator of somatosensory information from nerve endings across the face, extending nerve branches through bony canals in the face and mandibles, terminating in sensory receptors. Reptiles evolved several extreme forms of cranial somatosensation in which enhanced trigeminal tissues are present in species engaging in unique mechanosensory behaviors. However, morphology varies by clade and ecology among reptiles. Few lineages approach the extreme degree of tactile somatosensation possessed by crocodylians, the only remaining members of a clade that underwent an ecological transition from the terrestrial to semiaquatic habitat, also evolving a specialized trigeminal system. It remains to be understood how trigeminal osteological correlates inform how adaptations for enhanced cranial sensation evolved in crocodylians. Here we identify an increase in sensory abilities in Early Jurassic crocodylomorphs, preceding the transitions to a semiaquatic habitat. Through quantification of trigeminal neurovascular canal branching patterns in an extant phylogenetic bracket we quantify and identify morphologies associated with sensory behaviors in representative fossil taxa, we find stepwise progression of increasing neurovascular canal density, complexity, and distribution from the primitive archosaurian to the derived crocodilian condition. Model-based inferences of sensory ecologies tested on quantified morphologies of extant taxa with known sensory behaviors indicate a parallel increase in sensory abilities among pseudosuchians. These findings establish patterns of reptile trigeminal ecomorphology, revealing evolutionary patterns of somatosensory ecology.
更多
查看译文
关键词
crocodyliforms,ecomorphology,somatosensation,trigeminal
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要