WeChat Mini Program
Old Version Features

多种模型预测HBV-ACLF合并IPA患者的短期预后价值分析

Electronic Journal of Emerging Infectious Diseases(2022)

南昌大学第一附属医院

Cited 0|Views17
Abstract
目的 应用终末期肝病模型(MELD)评分、终末期肝病联合血清钠模型(MELD-Na)评分、慢性肝功能衰竭联盟-器官功能衰竭(CLIF-C OF)评分和慢性肝衰竭联盟-慢加急性肝衰竭预后(CLIF-C ACLF)评分对乙型肝炎病毒相关慢加急性肝衰竭(HBV-ACLF)合并侵袭性肺曲霉病(IPA)患者短期死亡风险进行预测,探讨并比较各种评分系统对HBV-ACLF合并IPA患者短期病死率的预测价值.方法 收集南昌大学第一附属医院感染科2019年1月至2021年12月收治的HBV-ACLF患者的临床资料.根据是否诊断为IPA分为IPA组和非IPA组,随访记录HBV-ACLF患者自诊断后28d的临床转归情况.分别计算MELD评分、MELD-Na评分、CLIF-C OF评分和CLIF-C ACLF评分,应用ROC曲线比较以上评分系统的预测价值.符合正态分布者两组间的比较采用t检验,不符合正态分布者两组间的比较采用Mann-Whitney U检验.结果 在110例患者中,治疗28d死亡36例(32.7%).MELD评分、MELD-Na评分、CLIF-C OF评分和CLIF-C ACLF评分预测HBV-ACLF合并IPA患者28d死亡风险的ROC曲线下面积(AUC)分别为0.77、0.74、0.93和0.89.CLIF-C OF评分的AUC最大,与CLIF-C ACLF评分AUC的比较差异无统计学意义(P>0.05).CLIF-C OF评分、CLIF-C ACLF评分与MELD评分和MELD-Na评分AUC的比较差异均有统计学意义(P<0.05).结论 CLIF-C OF评分和CLIF-C ACLF评分能有效预测ACLF合并IPA患者28d的死亡风险.
More
Translated text
Key words
Acute-on-chronic liver failure,Hepatitis B virus,Aspergillus,Prognosis
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined