WeChat Mini Program
Old Version Features

Time Series Phase Unwrapping Algorithm Using LP-norm Optimization Compressive Sensing

INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION(2023)

China Univ Min & Technol

Cited 3|Views22
Abstract
Time series phase unwrapping is an essential step in the time series interferometric synthetic aperture radar technique for deformation monitoring. However, traditional unwrapping algorithms are prone to unwrapping errors in the case of intense noise and steep deformation gradients, which directly affect the accuracy of the deformation information interpretation. To address this problem, a time series phase unwrapping algorithm using LP-norm optimization compressive sensing is proposed in this paper. This algorithm first transforms the minimizing L0-norm describing compressive sensing technique into a nonconvex problem with weaker constraints, that is, minimizing the LP-norm. Then, an optimized compressed sensing model was proposed by combining the constraint criterion of the phase triplet closure in the temporal domain and the solution strategy of the iterative reweighted least squares method. Improved temporal dimensional phase unwrapping and unwrapping error correction algorithms were developed based on this optimized model. Finally, the proposed algorithm was perfected by combining the above improved methods and the pseudo-three-dimensional phase unwrapping framework. Simulated and Sentinel-1A real datasets verify that the proposed algorithm has better noise robustness, unwrapping stability, and efficiency than traditional algorithms, particularly in the case of a steep deformation gradient and intense noise. The temporal coherence estimated by the proposed algorithm for the real dataset is generally greater than 0.99, which is far superior to traditional algorithms. Furthermore, the proposed algorithm facilitates high-precision interpretation of deformation information. The cross-validation results show that the deformation results obtained by traditional algorithms are underestimated by at least 73 mm/a and 68 mm at the maximum subsidence than the DSInSAR. However, the deformation result obtained by the proposed algorithm is highly consistent with that of the DSInSAR.
More
Translated text
Key words
Interferometric synthetic aperture radar,Time series phase unwrapping,Compressive sensing,LP-norm minimization
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined