Polynomial chaos surrogate and bayesian learning for coupled hydro-mechanical behavior of soil slope

Rock Mechanics Bulletin(2023)

引用 1|浏览12
暂无评分
摘要
As rainfall infiltrates into soil slopes, the hydraulic and mechanical behaviors of soils are interacted. In this study, an efficient probabilistic parameter estimation method for coupled hydro-mechanical behavior in soil slope is proposed. This method integrates the Polynomial Chaos Expansion (PCE) method, the coupled hydro-mechanical modeling, and the Bayesian learning method. A coupled hydro-mechanical numerical model is established for the simulation of behaviors of unsaturated soil slope under rainfall infiltration, following by training a cheap-to-run PCE surrogate to replace it. Probabilistic estimation of soil parameters is conducted based on the Bayesian learning technique with the Markov Chain Monte Carlo (MCMC) simulation. A numerical example of an unsaturated slope under rainfall infiltration is presented to illustrate the proposed method. The effects of measurement durations and response types on parameter estimation are addressed. The result shows that with the increase of measurement duration, the uncertainties of soil parameters are significantly reduced. The uncertainties of hydraulic properties are reduced significantly using the pore water pressure data, while the uncertainties of soil strength parameters are reduced greatly using the measured displacement data.
更多
查看译文
关键词
Landslide,Hydro-mechanical,Polynomial chaos expansion,Bayesian learning,Markov chain Monte Carlo
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要