Experimental demonstration of real-time optical DFT-S DMT signal transmission for a blue-LED-based UWOC system using spatial diversity reception.

Applied Optics(2023)

引用 3|浏览3
暂无评分
摘要
Underwater wireless optical communication (UWOC) has broad prospects in underwater real-time applications. We design and experimentally demonstrate a real-time discrete Fourier transform spread discrete multi-tone (DFT-S DMT) signal transmission based on a field programmable gate array for a blue-LED-based UWOC system with a data rate of up to 30 Mbps over a 15-m underwater channel. The architecture and usage of an on-chip resource as well as power consumption are analyzed and discussed. To reduce the impacts of multipath fading and received intensity fluctuation, spatial diversity reception is also introduced. Furthermore, the receiver sensitivity at a specified bit error rate (BER) threshold and the quality of the images are evaluated using three types of Reed-Solomon (RS) codes. At the BER threshold of 10-4, over 2.8-dB receiver sensitivity improvement is obtained by the DFT-S DMT scheme with the RS (64, 56) code as compared to the uncoded one at the data rate of 30 Mbps. The performance of BER, color difference, and structural similarity in the image transmission of DFT-S DMT is superior to that of the conventional hard clipping quadrature amplitude modulation DMT in a high-data-rate region because of the low peak-to-average-power ratio and ability to mitigate high-frequency fading in a band-limited UWOC system. With schemes of the RS code, DFT-S, and diversity reception, error-free transmission of images is achieved over a 15-m water channel. The proposed UWOC system has the advantages of low power consumption and portability, which foresees a bright future in underwater applications over short to moderate distances.
更多
查看译文
关键词
spatial diversity reception,uwoc system,real-time,blue-led-based
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要