Grassland Biomass Inversion Based on a Random Forest Algorithm and Drought Risk Assessment

REMOTE SENSING(2022)

引用 1|浏览2
暂无评分
摘要
Xilin Gol is a typical kind of grassland in arid and semi-arid regions. Under climate warming, the droughts faced by various grassland types tend to expand in scope and intensity, and increase in frequency. Therefore, the quantitative analysis of drought risk in different grassland types becomes particularly important. Based on multi-source data, a random forest regression algorithm was used to construct a grassland biomass estimation model, which was then used to analyze the spatiotemporal variation characteristics of grassland biomass. A quantitative assessment of drought risk (DR) in different grassland types was applied based on the theory of risk formation, and a structural equation model (SEM) was used to analyze the drivers of drought risk in different grassland types. The results show that among the eight selected variables that affect grassland biomass, the model had the highest accuracy (R = 0.90) when the normalized difference vegetation index (NDVI), precipitation (Prcp), soil moisture (SM) and longitude (Lon) were combined as input variables. The grassland biomass showed a spatial distribution that was high in the east and low in the west, gradually decreasing from northeast to southwest. Among the grasslands, desert grassland (DRS) had the highest drought risk (DR = 0.30), while meadow grassland (MEG) had the lowest risk (DR = 0.02). The analysis of the drivers of drought risk in grassland biomass shows that meteorological elements mainly drive typical grasslands (TYG) and other grasslands (OTH). SM greatly impacted MEG, and ET had a relatively high contribution to DRS. This study provides a basis for managing different grassland types in large areas and developing corresponding drought adaptation programs.
更多
查看译文
关键词
biomass inversion,prairie drought risk,climate variability,human activities
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要