WeChat Mini Program
Old Version Features

Temporal Coherence-Based Distributed Ray Tracing of Massive Scenes.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS(2024)

Shandong Univ Finance & Econ

Cited 3|Views99
Abstract
Distributed ray tracing algorithms are widely used when rendering massive scenes, where data utilization and load balancing are the keys to improving performance. One essential observation is that rays are temporally coherent, which indicates that temporal information can be used to improve computational efficiency. In this paper, we use temporal coherence to optimize the performance of distributed ray tracing. First, we propose a temporal coherence-based scheduling algorithm to guide the task/data assignment and scheduling. Then, we propose a virtual portal structure to predict the radiance of rays based on the previous frame, and send the rays with low radiance to a precomputed simplified model for further tracing, which can dramatically reduce the traversal complexity and the overhead of network data transmission. The approach was validated on scenes of sizes up to 355 GB. Our algorithm can achieve a speedup of up to 81% compared to previous algorithms, with a very small mean squared error.
More
Translated text
Key words
Rendering (computer graphics),Ray tracing,Portals,Heuristic algorithms,Dynamic scheduling,Task analysis,Distributed databases,Computer graphics,distributed graphics,ray tracing
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined