Representation and Quantification of Module Activity from Omics Data with Rroma
NPJ systems biology and applications(2024)SCI 2区SCI 1区
INSERM U900
Abstract
The efficiency of analyzing high-throughput data in systems biology has been demonstrated in numerous studies, where molecular data, such as transcriptomics and proteomics, offers great opportunities for understanding the complexity of biological processes. One important aspect of data analysis in systems biology is the shift from a reductionist approach that focuses on individual components to a more integrative perspective that considers the system as a whole, where the emphasis shifted from differential expression of individual genes to determining the activity of gene sets. Here, we present the rROMA software package for fast and accurate computation of the activity of gene sets with coordinated expression. The rROMA package incorporates significant improvements in the calculation algorithm, along with the implementation of several functions for statistical analysis and visualizing results. These additions greatly expand the package’s capabilities and offer valuable tools for data analysis and interpretation. It is an open-source package available on github at: www.github.com/sysbio-curie/rROMA . Based on publicly available transcriptomic datasets, we applied rROMA to cystic fibrosis, highlighting biological mechanisms potentially involved in the establishment and progression of the disease and the associated genes. Results indicate that rROMA can detect disease-related active signaling pathways using transcriptomic and proteomic data. The results notably identified a significant mechanism relevant to cystic fibrosis, raised awareness of a possible bias related to cell culture, and uncovered an intriguing gene that warrants further investigation.
MoreTranslated text
Key words
Genomic Data Integration,Systems Biology,Gene Set Enrichment Analysis
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
2010
被引用806 | 浏览
2008
被引用1032 | 浏览
2009
被引用3563 | 浏览
2006
被引用147 | 浏览
2015
被引用16 | 浏览
2015
被引用29 | 浏览
1995
被引用118193 | 浏览
2016
被引用620 | 浏览
2018
被引用930 | 浏览
2018
被引用28 | 浏览
2016
被引用34 | 浏览
2020
被引用232 | 浏览
2020
被引用43 | 浏览
2020
被引用127 | 浏览
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话