WeChat Mini Program
Old Version Features

Verification of Cyber Emulation Experiments Through Virtual Machine and Host Metrics

THE PROCEEDINGS OF 15TH WORKSHOP ON CYBER SECURITY EXPERIMENTATION AND TEST, CSET 2022(2022)

Sandia Natl Labs

Cited 2|Views17
Abstract
Virtual machine emulation environments provide ideal testbeds for cybersecurity evaluations because they run real software binaries in a scalable, offline test setting that is suitable for assessing the impacts of software security flaws on the system. Verification of such emulations determines whether the environment is working as intended. Verification can focus on various aspects such as timing realism, traffic realism, and resource realism. In this paper, we study resource realism and issues associated with virtual machine resource utilization. We examine telemetry metrics gathered from a series of structured experiments which involve large numbers of parallel emulations meant to oversubscribe resources at some point. We present an approach to use telemetry metrics for emulation verification, and we demonstrate this approach on two cyber scenarios. Descriptions of the experimental configurations are provided along with a detailed discussion of statistical tests used to compare telemetry metrics. Results demonstrate the potential for a structured experimental framework, combined with statistical analysis of telemetry metrics, to support emulation verification. We conclude with comments on generalizability and potential future work.
More
Translated text
Key words
cyber experimentation,system emulation,model verification
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined