Low-power In-pixel Computing with Current-modulated Switched Capacitors
CoRR(2022)
Abstract
We present a scalable in-pixel processing architecture that can reduce the data throughput by 10X and consume less than 30 mW per megapixel at the imager frontend. Unlike the state-of-the-art (SOA) analog process-in-pixel (PIP) that modulates the exposure time of photosensors when performing matrix-vector multiplications, we use switched capacitors and pulse width modulation (PWM). This non-destructive approach decouples the sensor exposure and computing, providing processing parallelism and high data fidelity. Our design minimizes the computational complexity and chip density by leveraging the patch-based feature extraction that can perform as well as the CNN. We further reduce data using partial observation of the attended objects, which performs closely to the full frame observations. We have been studying the reduction of output features as a function of accuracy, chip density and power consumption from a transformer-based backend model for object classification and detection.
MoreTranslated text
Key words
CMOS Image Sensors,Working Memory,Sensory Processing,Neuromorphic Computing,Low-Noise Sensors
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined