PhysiBoSS 2.0: a Sustainable Integration of Stochastic Boolean and Agent-Based Modelling Frameworks
NPJ systems biology and applications(2023)SCI 2区SCI 1区
Life Science
Abstract
Cancer progression is a complex phenomenon that spans multiple scales from molecular to cellular and intercellular. Simulations can be used to perturb the underlying mechanisms of those systems and to generate hypotheses on novel therapies. We present a new version of PhysiBoSS, a multiscale modelling framework designed to cover multiple temporal and spatial scales, that improves its integration with PhysiCell, decoupling the cell agent simulations with the internal Boolean model in an easy-to-maintain computational framework. PhysiBoSS 2.0 is a redesign and reimplementation of PhysiBoSS, conceived as an add-on that expands the PhysiCell agent-based functionalities with intracellular cell signalling using MaBoSS having a decoupled, maintainable and model-agnostic design. PhysiBoSS 2.0 successfully reproduces simulations reported in the former version and expands its functionalities such as using user-defined models and cells’ specifications, having mechanistic submodels of substrate internalisation with ODEs and enabling the study of drug synergies. PhysiBoSS 2.0 is open-source and publicly available on GitHub () under the BSD 3-clause license with several repositories of accompanying interoperable tools. Additionally, a nanoHUB tool has been set up to ease the use of PhysiBoSS 2.0 (). ### Competing Interest Statement The authors have declared no competing interest.
MoreTranslated text
PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Try using models to generate summary,it takes about 60s
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Patient-specific Boolean Models of Signalling Networks Guide Personalised Treatments.
eLife 2022
被引用42
Lessons Learned from a Performance Analysis and Optimization of a Multiscale Cellular Simulation
PROCEEDINGS OF THE PLATFORM FOR ADVANCED SCIENTIFIC COMPUTING CONFERENCE, PASC 2023 2023
被引用2
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
去 AI 文献库 对话