Hierarchical Learning in Euclidean Neural Networks
CoRR(2022)
Abstract
Equivariant machine learning methods have shown wide success at 3D learning applications in recent years. These models explicitly build in the reflection, translation and rotation symmetries of Euclidean space and have facilitated large advances in accuracy and data efficiency for a range of applications in the physical sciences. An outstanding question for equivariant models is why they achieve such larger-than-expected advances in these applications. To probe this question, we examine the role of higher order (non-scalar) features in Euclidean Neural Networks (\texttt{e3nn}). We focus on the previously studied application of \texttt{e3nn} to the problem of electron density prediction, which allows for a variety of non-scalar outputs, and examine whether the nature of the output (scalar $l=0$, vector $l=1$, or higher order $l>1$) is relevant to the effectiveness of non-scalar hidden features in the network. Further, we examine the behavior of non-scalar features throughout training, finding a natural hierarchy of features by $l$, reminiscent of a multipole expansion. We aim for our work to ultimately inform design principles and choices of domain applications for {\tt e3nn} networks.
MoreTranslated text
Key words
Nonlinear Systems,Backpropagation Learning,Model Reduction
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined