WeChat Mini Program
Old Version Features

腾格里沙漠西南缘土门剖面微量元素记录的MIS3高分辨率季风环境变化

Journal of Desert Research(2022)

华南师范大学

Cited 0|Views20
Abstract
对位于腾格里沙漠西南边缘的土门剖面中时代为MIS3的TMS3层段进行序列分析与14C和释光测年,并在此基础上对沉积层进行系统的微量元素地球化学分析.结果表明:TMS3是由沙丘砂与其他5类沉积相(黄土状亚砂土、砂黄土、湖沼相、水成黄土和古土壤)构成的相互叠覆的沉积,形成14.5个"沉积旋回".TMS3微量元素Mn、P、Sr、Rb、V、Zn、Cr、Ni、Cu和Nb在沙丘砂中含量低,在其他5类沉积相中含量高;Rb/Sr比值则呈现相反的变化趋势.在剖面上,随着沙丘砂与这5类沉积相的交替,元素含量、Rb/Sr比值表现出明显的峰(高值)谷(低值)波动,并形成基本上与沉积旋回数量一致的"元素旋回"——ECY1-ECY14.5.该层段14.5个元素旋回揭示了相同数量的腾格里沙漠东亚冬夏季风演变的"旋回"——MCY1-14.5,包括14次冬季风事件和15次夏季风事件,每个季风旋回的持续时间平均约2.48ka;TMS3元素记录的15次夏季风事件与GRIP冰芯和葫芦洞石笋MIS3-δ18O曲线的间冰阶具有相同的发生次数,也与邻近的古浪黄土MIS3中的间冰阶可以进行很好的对比.土门剖面TMS3的地球化学迁聚行为和沉积相,在一定意义上诠释了 MIS3北半球冷暖波动——腾格里沙漠东亚冬夏季风环境变化的响应过程.
More
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined