Design and Evaluation of a Computational Phenotype to Identify Patients with Metastatic Breast Cancer Within the Electronic Health Record
JCO Clinical Cancer Informatics(2022)
2424 Erwin Rd
Abstract
PURPOSE Outcomes for patients with metastatic breast cancer (MBC) are continually improving as more effective treatments become available. Granular data sets of this unique population are lacking, and the standard method for data collection relies largely on chart review. Therefore, using electronic health records (EHR) collected at a tertiary hospital system, we developed and evaluated a computational phenotype designed to identify all patients with MBC, and we compared the effectiveness of this algorithm against the gold standard, clinical chart review. METHODS A cohort of patients with breast cancer were identified according to International Classification of Diseases codes, the institutional tumor registry, and SNOMED codes. Chart review was performed to determine whether distant metastases had occurred. We developed a computational phenotype, on the basis of SNOMED concept IDs, which was applied to the EHR to identify patients with MBC. Contingency tables were used to aggregate and compare results. RESULTS A total of 1,741 patients with breast cancer were identified using data from International Classification of Diseases codes, the tumor registry, and/or SNOMED concept identifiers. Chart review of all patients classified each patient as having MBC (n = 416; 23.9%) versus not (n = 1,325; 75.9%). The final computational phenotype successfully classified 1,646 patients (95% accuracy; 82% sensitivity; 99% specificity). CONCLUSION Hospital systems with robust EHRs and reliable mapping to SNOMED have the ability to use standard codes to derive computational phenotypes. These algorithms perform reasonably well and have the added ability to be run at disparate health care facilities. Better tooling to navigate the polyhierarchical structure of SNOMED ontology could yield better-performing computational phenotypes.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined