Polarizable Force Field of Intrinsically Disordered Proteins with CMAP and Reweighting Optimization.

Journal of Chemical Information and Modeling(2022)

引用 2|浏览4
暂无评分
摘要
Intrinsically disordered proteins (IDPs) are highly structurally heterogeneous without a specific tertiary structure under physiology conditions and play key roles in the development of human diseases. Due to the characteristics of diverse conformations, as one of the important methods, molecular dynamics simulation can complement information for experimental methods. Because of the enrichment for charged amino acids for IDPs, polarizable force fields should be a good choice for the simulation of IDPs. However, current polarizable force fields are limited in sampling conformer features of IDPs. Therefore, a polarizable force field was released and named Drude2019IDP based on Drude2019 with reweighting and grid-based potential energy correction map optimization. In order to evaluate the performance of Drude2019IDP, 16 dipeptides, 18 short peptides, 3 representative IDPs, and 5 structural proteins were simulated. The results show that the NMR observables driven by Drude2019IDP are in better agreement with the experiment data than those by Drude2019 on short peptides and IDPs. Drude2019IDP can sample more diverse conformations than Drude2019. Furthermore, the performances of the two force fields are similar to the sample ordered proteins. These results confirm that the developed Drude2019IDP can improve the reproduction of conformers for intrinsically disordered proteins and can be used to gain insight into the paradigm of sequence-disorder for IDPs.
更多
查看译文
关键词
intrinsically disordered proteins
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要