WeChat Mini Program
Old Version Features

Generalizable Learning to Optimize into Wide Valleys

ICLR 2022(2022)

Cited 0|Views14
Abstract
Learning to optimize (L2O) has gained increasing popularity in various optimization tasks, since classical optimizers usually require laborious, problem-specific design and hyperparameter tuning. However, current L2O approaches are designed for fast minimization of the objective function value (i.e., training error), hence often suffering from poor generalization ability such as in training deep neural networks (DNNs), including ($i$) disappointing performance across unseen optimizees $\textit{(optimizer generalization)}$; ($ii$) unsatisfactory test-set accuracy of trained DNNs ($\textit{optmizee generalization}$). To overcome the limitations, this paper introduces $\textit{flatness-aware}$ regularizers into L2O for shaping the local geometry of optimizee's loss landscape. Specifically, it guides optimizee to locate well-generalizable minimas in large flat regions of loss surface, while tending to avoid sharp valleys. Such optimizee generalization abilities of $\textit{flatness-aware}$ regularizers have been proved theoretically. Extensive experiments consistently validate the effectiveness of our proposals with substantially improved generalization on multiple sophisticated L2O models and diverse optimizees. Our theoretical and empirical results solidify the foundation for L2O's practically usage. All codes and pre-trained models will be shared upon acceptance.
More
Translated text
Key words
L2O,Generalization,Flatness,Entropy-SGD
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined