A Probabilistic Autoencoder for Type Ia Supernova Spectral Time Series
ASTROPHYSICAL JOURNAL(2022)
Univ Calif Berkeley
Abstract
We construct a physically-parameterized probabilistic autoencoder (PAE) to learn the intrinsic diversity of type Ia supernovae (SNe Ia) from a sparse set of spectral time series. The PAE is a two-stage generative model, composed of an Auto-Encoder (AE) which is interpreted probabilistically after training using a Normalizing Flow (NF). We demonstrate that the PAE learns a low-dimensional latent space that captures the nonlinear range of features that exists within the population, and can accurately model the spectral evolution of SNe Ia across the full range of wavelength and observation times directly from the data. By introducing a correlation penalty term and multi-stage training setup alongside our physically-parameterized network we show that intrinsic and extrinsic modes of variability can be separated during training, removing the need for the additional models to perform magnitude standardization. We then use our PAE in a number of downstream tasks on SNe Ia for increasingly precise cosmological analyses, including automatic detection of SN outliers, the generation of samples consistent with the data distribution, and solving the inverse problem in the presence of noisy and incomplete data to constrain cosmological distance measurements. We find that the optimal number of intrinsic model parameters appears to be three, in line with previous studies, and show that we can standardize our test sample of SNe Ia with an RMS of $0.091 \pm 0.010$ mag, which corresponds to $0.074 \pm 0.010$ mag if peculiar velocity contributions are removed. Trained models and codes are released at \href{https://github.com/georgestein/suPAErnova}{github.com/georgestein/suPAErnova}
MoreTranslated text
Key words
Type Ia Supernovae,Pattern Discovery
PDF
View via Publisher
AI Read Science
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined