稳定干扰长链非编码RNA LINC01224结直肠癌细胞株的建立及其对细胞凋亡的影响
Acta Universitatis Medicinalis Anhui(2022)
Abstract
目的 建立稳定干扰长链非编码RNA(lncRNA)LINC01224表达的结直肠癌LoVo和SW620细胞株,并探讨下调LINC01224表达对结直肠癌细胞凋亡的影响.方法 使用GEPIA2数据库分析LINC01224在结直肠癌组织中的表达情况;qPCR法检测LINC01224在10种人结直肠癌细胞中的表达水平.3种不同的LINC01224 siRNA分别转染人结直肠癌LoVo细胞,取抑制LINC01224表达效果最显著的siRNA序列构建LINC01224 shRNA慢病毒载体.在HEK293T细胞内包装成重组慢病毒颗粒,再感染LoVo和SW620细胞,经嘌呤霉素筛选后以有限稀释法获得稳定干扰LINC01224的单克隆细胞.MTS法检测细胞增殖能力,流式细胞术检测细胞凋亡率.结果 LINC01224在结直肠癌组织中的表达高于正常结直肠组织,其在10种结直肠癌细胞中的表达也高于正常结直肠上皮细胞HCOEPic.siRNA-3对LoVo细胞内LINC01224表达的抑制率高于siRNA-1和siRNA-2.故选择siRNA-3设计LINC01224 shRNA.与对照组(sh-NC组)相比,稳定干扰LINC01224组(sh-LINC01224组)LoVo和SW620细胞内LINC01224的表达水平降低(P<0.01),其细胞生长速度减慢(P<0.01),凋亡率也增加(P<0.01).结论 成功构建LINC01224的shRNA慢病毒干扰载体,该载体能够稳定感染LoVo和SW620细胞,下调LINC01224表达并诱导细胞凋亡.
More求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined