Retrieval of Sub-Kilometric Relative Surface Soil Moisture with Sentinel-1 Utilizing Different Backscatter Normalization Factors.
IEEE Transactions on Geoscience and Remote Sensing(2022)
Univ Reading
Abstract
Spatiotemporal distribution of soil moisture is important for hydrometeorological and agricultural applications. There is growing interest in monitoring soil moisture in relation to soil- and land-based natural flood management (NFM), to understand the soil's ability, via land-use and management changes, and to delay the arrival of flood peaks in nearby watercourses. This article monitors relative surface soil moisture (rSSM) across the Thames Valley, U.K., using Sentinel-1 data, and the Vienna University of Technology (TU-Wien) Change Detection Algorithm, with a novel exploration of monthly and annual normalization factors and spatial averaging. Two pairs of normalization factors are introduced to remove impacts from varying local incidence angles through direct and multiple regression slopes. The spatiotemporal distribution of rSSM values at various spatial resolutions (1000, 500, 250, and 100 m) is assessed. Comparisons with in situ soil moisture data from the COSMOS-UK network show that, while general temporal trends agree, the difference in effective depth of measurements, coupled with vegetation impacts during the growing season, makes comparison with soil moisture observations difficult. Temporal rSSM trends can be retrieved at spatial resolutions down to 100 m, and the rSSM RMSE was found to decrease as the spatial resolution increases. The vegetation effects upon the rSSM are further explored by comparing the two dominant land cover types: Arable and Horticulture, and Improved Grassland. It was found that, while the rSSM retrieval for these land covers was possible, and the general soil moisture trend is clear, overlying vegetation during the summer artificially increased the rSSM values.
MoreTranslated text
Key words
Soil moisture,Backscatter,Radar,Satellite broadcasting,Moisture,Remote sensing,Vegetation mapping,Change detection algorithm,River Thames,Sentinel-1,soil moisture,synthetic aperture radar (SAR)
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined