Precision measurement of Compton scattering in silicon with a skipper CCD for dark matter detection

D. Norcini,N. Castello-Mor,D. Baxter, N. J. Corso,J. Cuevas-Zepeda, C. De Dominicis,A. Matalon, S. Munagavalasa,S. Paul,P. Privitera,K. Ramanathan, R. Smida, R. Thomas, R. Yajur,A. E. Chavarria,K. McGuire,P. Mitra, A. Piers,M. Settimo, J. Cortabitarte Gutierrez,J. Duarte-Campderros, A. Lantero-Barreda, A. Lopez-Virto,I. Vila,R. Vilar,N. Avalos, X. Bertou, A. Dastgheibi-Fard,O. Deligny,E. Estrada, N. Gadloa,R. Gaior,T. Hossbach,L. Khalil, B. Kilminster,I. Lawson, S. Lee, A. Letessier-Selvon, P. Loaiza, G. Papadopoulos, P. Robmann,M. Traina, G. Warot, J-P. Zopounidis

arxiv(2022)

引用 10|浏览31
暂无评分
摘要
Experiments aiming to directly detect dark matter through particle recoils can achieve energy thresholds of $\mathcal{O}(1\,\mathrm{eV})$. In this regime, ionization signals from small-angle Compton scatters of environmental $\gamma$-rays constitute a significant background. Monte Carlo simulations used to build background models have not been experimentally validated at these low energies. We report a precision measurement of Compton scattering on silicon atomic shell electrons down to 23$\,$eV. A skipper charge-coupled device (CCD) with single-electron resolution, developed for the DAMIC-M experiment, was exposed to a $^{241}$Am $\gamma$-ray source over several months. Features associated with the silicon K, L$_{1}$, and L$_{2,3}$-shells are clearly identified, and scattering on valence electrons is detected for the first time below 100$\,$eV. We find that the relativistic impulse approximation for Compton scattering, which is implemented in Monte Carlo simulations commonly used by direct detection experiments, does not reproduce the measured spectrum below 0.5$\,$keV. The data are in better agreement with $ab$ $initio$ calculations originally developed for X-ray absorption spectroscopy.
更多
查看译文
关键词
dark matter detection,dark matter,compton
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要