Classifying Worldwide Standardized Seismograph Network Records Using a Simple Convolution Neural Network
Seismological Research Letters(2022)SCI 2区SCI 3区
Univ New Mexico
Abstract
The U.S. Geological Survey (USGS) maintains an archive of 189,180 digitized scans of analog seismic records from the World-Wide Standardized Seismograph Network (WWSSN). Although these scans have been made public, the archive is too large to manually review, and few researchers have utilized large numbers of these records. To facilitate further research using this historical dataset, we develop a simple convolutional neural network (CNN) that rapidly ( similar to 4.75 s/film chip) classifies scanned film chip images (called "chips," because they are individually cut segments of 70 mm film) into four categories of "interestingness" to earthquake seismologists based on the presence of earthquakes and other seismic signals in the record: "no interest," "little interest," "interest," and "high interest." The CNN, dubbed "Seismic Analog Record Network" (SARNet), can identify four types of seismic traces ("no events," "minor events," "major events," and "errors") in 200 x 200 pixel subcrops with an accuracy of 92% using a confidence threshold of 85%. SARNet then converts 100 random subcrops from each film chip into the overall classification of interestingness. In this task, SARNet performed as well as expert human classifiers in determining the film chip's overall interest grade. Applying SARNet to 34,000 film chips in the WWSSN archive found that 21% of the images were of "high interest" and had an "indeterminate" rate of only 4%. Thus, the need for the manual review of images was reduced by 79%. Sorting of film chips derived from SARNet will expedite further exploration of the archive of digitized analog seismic records stored at the USGS.
MoreTranslated text
求助PDF
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Related Papers
Preface to the Focus Section on Big Data Problems in Seismology
SEISMOLOGICAL RESEARCH LETTERS 2022
被引用0
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper