WeChat Mini Program
Old Version Features

冠心病患者CD8、PD-1、PD-L1、TGF-β1、MMP-14血浆含量与冠状动脉狭窄程度的相关性分析及预测价值

Acta Medicinae Universitatis Scientiae et Technologiae Huazhong(2022)

Cited 0|Views30
Abstract
目的 借助生物信息学分析和临床样本检测,探究人血浆白细胞分化抗原(CD8)、程序性死亡受体-1(pro-grammed cell death protein-1,PD-1)、细胞程序性死亡配体-1(programmed cell death ligand-1,PD-L1)、转化生长因子-β1(transforming growth factor-β1,TGF-β1)和膜型基质金属蛋白酶-1(membrane type 1 matrix metalloproteinase,MT1-MMP,又名MMP-14)与冠心病发病过程及冠状动脉狭窄程度的相关性,为冠心病的早期筛查及预测提供新的思路.方法 通过生物信息学分析,对CD8、PD-1、PD-L1、TGF-β1、MMP-14进行GO和KEGG通路富集分析,并构建各分子间PPI网络图.选取39例冠心病患者作为研究对象,根据Gensini评分系统将其冠状动脉狭窄程度分为轻、中、重3组,采用酶联免疫吸附法(ELISA)检测各组CD8、PD-1、PD-L1、TGF-β1、MMP-14血浆含量,并分析各分子血浆含量与患者Gensini评分的相关性,评估其对冠心病发病的预测价值.结果 GO和K EGG通路富集分析显示CD8、PD-1、PD-L1、TGF-β1、MMP-14可作用于冠心病及其炎症反应通路,PPI网络分析显示各分子间具有一定相互作用关系.PD-L1血浆含量与Gensini评分呈显著正相关.CD8、PD-1、TGF-β1、MMP-14与Gensini评分线性关系不显著,但是从趋势上看PD-1及MMP-14血浆含量与Gensini评分存在正相关趋势,CD8及TGF-β1与Gensini评分存在负相关趋势.结论 CD8、PD-1、PD-L1、TGF-β1、MMP-14可联合作用于冠心病的发生发展过程,各分子血浆含量与冠状动脉狭窄程度存在一定程度相关,可能作为冠状动脉狭窄程度的预测指标.
More
求助PDF
上传PDF
Bibtex
收藏
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined