An Efficient Dopant for Introducing Magnetism into Topological Insulator Bi2Se3
MATERIALS(2022)
Sichuan Univ
Abstract
In this work, we obtained an effective way to introduce magnetism into topological insulators, and successfully fabricated single crystal C-Bi2Se3. The structural, electrical and magnetic properties of non-magnetic element X (B, C and N) doped at Bi, Se1, Se2 and VDW gap sites of Bi2Se3 were studied by the first principles. It is shown that the impurity bands formed inside the bulk inverted energy gap near the Fermi level with C doping Bi2Se3. Due to spin-polarized ferromagnetic coupling, the time inversion symmetry of Bi2Se3 is destroyed. Remarkably, C is the most effective dopant because of the magnetic moment produced by doping at all positions. The experiment confirmed that the remnant ferromagnetism Mr is related to the C concentration. Theoretical calculations and experiments confirmed that carbon-doped Bi2Se3 is ferromagnetic, which provides a plan for manipulating topological properties and exploring spintronic applications.
MoreTranslated text
Key words
topological insulator,Bi2Se3,density functional theory,magnetism
上传PDF
View via Publisher
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
- Pretraining has recently greatly promoted the development of natural language processing (NLP)
- We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
- We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
- The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
- Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example

Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined