WeChat Mini Program
Old Version Features

局部晚期胃癌根治术后放化疗患者复发模式及预后因素分析

Chinese Journal of Radiation Oncology(2022)

Cited 1|Views18
Abstract
目的:分析局部晚期胃癌根治术后(>D 1术)放化疗,影响预后的因素和患者的复发模式,探讨术后辅助放疗的价值。 方法:选取2008—2020年在苏州大学附属第二医院接受术后辅助放化疗的171例胃癌病例进行回顾性分析。用 Kaplan- Meier法计算复发率和生存率, log- rank法单因素预后分析, Cox模型多因素预后分析。 结果:全组中位随访时间63个月,随访率93.6%。Ⅱ期和Ⅲ期患者分别占31.0%和66.7%。3级及以上急性胃肠道反应和血液学不良反应的发生率分别为8.8%和9.9%。总计166例患者完成了整个放化疗方案,期间无不良反应相关死亡病例出现。复发模式方面,17例患者出现局部区域复发,29例患者出现远处转移,12例患者出现腹膜种植转移。1年、3年及5年总生存率分别为83.7%、66.3%及60.0%。1年、3年及5年无病生存率分别为75.5%、62.7%及56.5%。多因素分析显示T分期、周围神经侵犯和淋巴结转移率为总生存的独立预后因素。结论:胃癌术后调强放疗联合化疗患者耐受良好,不良反应可接受,有利于肿瘤局部控制并可提高患者长期生存获益。淋巴结转移率可作为总生存的独立预后因素。对于局部区域复发高危患者,应考虑术后辅助放化疗。
More
Translated text
Key words
Gastric cancer/radiotherapy,Gastric cancer/chemoradiotherapy,Lymph node ratio,Adjuvant therapy
求助PDF
上传PDF
Bibtex
AI Read Science
AI Summary
AI Summary is the key point extracted automatically understanding the full text of the paper, including the background, methods, results, conclusions, icons and other key content, so that you can get the outline of the paper at a glance.
Example
Background
Key content
Introduction
Methods
Results
Related work
Fund
Key content
  • Pretraining has recently greatly promoted the development of natural language processing (NLP)
  • We show that M6 outperforms the baselines in multimodal downstream tasks, and the large M6 with 10 parameters can reach a better performance
  • We propose a method called M6 that is able to process information of multiple modalities and perform both single-modal and cross-modal understanding and generation
  • The model is scaled to large model with 10 billion parameters with sophisticated deployment, and the 10 -parameter M6-large is the largest pretrained model in Chinese
  • Experimental results show that our proposed M6 outperforms the baseline in a number of downstream tasks concerning both single modality and multiple modalities We will continue the pretraining of extremely large models by increasing data to explore the limit of its performance
Upload PDF to Generate Summary
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn
Chat Paper
Summary is being generated by the instructions you defined