The Analysis of Spatial Patterns and Significant Factors Associated with Young-Driver-Involved Crashes in Florida

SUSTAINABILITY(2022)

引用 2|浏览7
暂无评分
摘要
Over the last three decades, traffic crashes have been one of the leading causes of fatalities and economic losses in the U.S.; compared with other age groups, this is especially concerning for the youth population (those aged between 16 and 24), mostly due to their inexperience, greater inattentiveness, and riskier behavior while driving. This research intends to investigate this issue around selected Florida university campuses. We employed three methods: (1) a comparative assessment for three selected counties using both planar Euclidean Distance and Roadway Network Distance-based Kernel Density Estimation methods to determine high-risk crash locations, (2) a crash density ratio difference approach to compare the maxima-normalized crash densities for the youth population and those victims that are 25 and up, and (3) a logistic regression approach to identify the statistically significant factors contributing to young-driver-involved crashes. The developed GIS maps illustrate the difference in spatial patterns of young-driver crash densities compared to those for other age groups. The statistical findings also reveal that intersections around university areas appear to be significantly problematic for youth populations, regardless of the differences in the general perspective of the characteristics of the selected counties. Moreover, the speed limit countermeasures around universities could not effectively prevent young-driver crash occurrences. Hence, the results of this study can provide valuable insights to transportation agencies in terms of pinpointing the high-risk locations around universities, assessing the effectiveness of existing safety countermeasures, and developing more reliable plans with a focus on the youth population.
更多
查看译文
关键词
young-driver-involved crashes, geographic information systems, spatial density analysis, kernel density estimation, logistic regression model
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要